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COMMENT 

Monopole invariants 

P A Horvlthy? and J H RawnsleyS 
t Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin, Ireland 
$ Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK 

Received 23 September 1985 

Abstract. The topological invariants of monpoles introduced by Taubes are described in 
a Chern-Weil framework. 

Consider a non-Abelian monopole ( A j , @ ) ,  with the Higgs field in the adjoint rep- 
resentation of a semisimple and compact Lie group G (for a review on monopoles see, 
e.g., Goddard and Olive (1978)). The expression 

r 

I = J  T r ( F @ )  
S2 

(where F is the field strength tensor and S2 is the 2-sphere at infinity) is known to be 
a topological invariant, i.e. to depend only on [@I E .rr,(G/H), where H is the residual 
symmetry group, G/H = GQo. (1) appears, for example, in the Bogomolni bound for 
the energy. 

(1) has been generalised by Taubes (1981) to 

I'k'  = Is2 Tr( FQk) .  (2) 

[Q] is now a p-tuple of integers m,, , . . , mp, where p is the dimension of the centre 
of the Lie algebra IJ of H. Taubes (1981) has proved that (2) is a linear combination 
of the mj (see also O'Sk er a1 1984). 

Recently (Horvlthy and Rawnsley 1985) (2) has been further generalised. We have 
shown that, i f f  is an arbitrary invariant function on @ x G/H which is linear in the 
first variable and if @ transforms according to an arbitrary representation of G, then 

I " ' = l , 2 f ( F , @ )  (3) 

is a topological invariant as long as @ is covariantly constant. As a matter of fact, the 
value of (3) depends only on the free part of [@I and is easily calculated (see (8)-(10) 
below). Such expressions are needed to derive generalised Dirac conditions (Goddard 
and Olive 1978, 1981, HorvPthy and Rawnsley 1985). 

The proof is based on constructing an isomorphism p between the free part of 
n,(H) and ap-dimensional lattice in the centre of 5. Here we give first a new Chern-Weil 
type construction$ to this map p. Next, we use the new framework to rederive the 
above results on generalised invariants. 

I We understand that there is a related result by Straumann and Wipf (1985). 
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In monopole theory one starts with a trivial ‘unifying’ bundle Q = R3 x G, where 
G-a compact and simply connected Lie group-is the ‘unifying group’. At large 
distances the G symmetry is spontaneously broken to a closed subgroup H of G. 
Geometrically, over S2(  Q, G) is reduced to a principal H bundle P. Any such reduction 
is produced by an equivariant ‘reducing map’ (Kobayashi and Nomizu 1963). Choosing 
a global trivialisation of Q, the reducing map can be identified with a map a: S 2 +  
G/H-the physical Higgs field. 0 defines a homotopy class [@]E r , (G/H).  Let 
6: 7r2(G/H) + 7r,(H) denote the connecting homomorphism. Two monopole bundles 
are isomorphic iff the corresponding classes in r 2 ( G / H )  (or in r , ( H ) )  are the same. 
r , ( H )  = 7rl(H)rree+ r l ( H S s ) ,  where rl(H)free = Zp, p being the dimension of Z($).  H,, 
is the semisimple subgroup of H generated by the derived algebra [$, 51. r l (Hss)  is a 
finite Abelian group. 

The free part is described as follows: denote by r = {[E $lexp 27r5 = 1) the unit 
lattice of H, and let z: $+ Z($) be the projection of the Lie algebra of H onto its 
centre. z(T), the image of r under z, is a lattice in Z($), whose dimension is the same 
as that of Z($), say p. In Horvathy and Rawnsley (1985) we have proved the following 
theorem. Define, for any loop y in H, 

P ( Y )  = (Wr)  1 Z ( 0 ” )  E Z($) (4) 

where OH = g-’ dg is the canonical (Maurer-Cartan) 1-form of H. p defines an 
isomorphism of r l (H)free  with z(T). If l , , .  . . , is a Z basis for z(T), then p (  y) = ZmJ,  
provides us with p ‘quantum’ numbers m, ,  . . . , m p .  Any loop in H is known to be 
homotopic to one of the form y (  t )  = exp(2n[t), for which p ( y )  = z ( [ ) .  

p ( @ )  = p ( 6 [ @ ] )  can also be calculated as the integral of a 2-form over the 2-sphere 
at infinity: 

( 5 )  P ( @ )  = (1/27r) lS2 @*Cl 

where R is the projection of G/H of the Z(b)-valued 2-form z(dO,) on G. The 
situation can also be understood from a Chern-Weil-type viewpoint (Kobayashi and 
Nomizu 1969). Let us consider an arbitrary connection form A on P, and denote by 
F = DA its curvature form. z ( F )  is a Z($)-valued 2-form on P, which is horizontal 
and basic, since 

r i z (  F )  = z( r g F )  = z(A dg-’F) = z( F )  

so z (F )  descends to S2 to a Z($)-valued 2-form flA, z ( F )  = 7r*f lA. This 2-form is 
closed: 

d(z(F) )  = z(dF)  = Z (  DF - [A, F ] )  = Z (  D F )  = 0 

since z vanishes on the derived algebra and DF=O by the Bianchi identity. 
Let A’ be a second connection form on P and consider B = A‘ - A. B is a basic 

1-form of the adjoint type so 
F’ = dA’+i[A’ A A’] = F +  DAB + + [ E  A E ] .  

Thus 

z (F ’ )=  z ( F ) + z ( D A B ) =  z(F)+d(z(B)) .  

But z(B) is an invariant horizontal 1-form which descends to a 1-form p on S2, and 
hence RA’ = flA + dp. This proves the following theorem. 
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Theorem. The cohomology class [Q”] E H2 dR(S2)@Z(b) is independent of the choice 
of the connection A on P. Consequently, the integral 

depends only on the bundle P. 

Let us now assume that ( P ,  H) is the reduction of the trivial unifying bundle (Q, G )  
defined by @: S 2  += G / H  and so can be identified with the pullback by @ of G, viewed 
as a principal H bundle over G/H.  The b component of OG defines a connection on 
the principal H bundle G whose pullback by CD is a connection form A on P. It is not 
difficult to show that z(DA) =@*a, where Q is the 2-form defined above. Thus we 
have established the equivalence of our new construction with those given before. 

Monopole fields also satisfy the Yang-Mills-Higgs equations. Assuming a 
sufficiently rapid fall-off at infinity, on S 2  the Yang-Mills-Higgs equation reduces to 
D*F = 0, where the * is the Hodge operator on the Riemannian manifold S 2 .  The 
solution of this equation has been given by Goddard er a1 (1977). There exists a 
constant vector II in such that F = %I, where 9 is the canonical area form of the 
2-sphere. lI is quantised, exp (47rII) = 1. The vector II can be chosen without loss of 
generality in any given Cartan subalgebra of b. 

This theorem can also be reformulated (Friedrich and Habermann 1985) as the 
following theorem. 

Theorem. The holonomy group of asymptotic monopole bundles is a U( l ) ,  generated 
by the ‘non-Abelian charge’ vector II. 

Here we give a new proof for this statement. The field strength tensor F is a section 
of the bundle of Lie algebra-valued 2-forms on S 2 ,  so F = ( ~ * 9 ) $ ,  where 7~ is the 
projection P + S 2 ,  the * denotes pullback and $ is an adjoint Higgs-type field, $( pg) = 
A dg-’$( p ) .  * F  = $ (Hodge star) and hence the asymptotic field equation reduces to 
D$ = 0: $ is a covariantly constant Higgs field. 

If X and Y are vector fields on P, then F ( X ,  Y )  =f$, where f is the real function 
f =  r * F ( X ,  Y ) .  Thus for any horizontal vector field Z on P :  

Z ( F ( X ,  Y ) )  = Z(f)lL - f [ A ( Z ) ,  $1 = Z ( f ) $  

Z , ( .  . . Z , { F ( X ,  Y ) } .  . .) =f‘k’$ 
because 0 = D$ = d$ + [ A ,  $1 and 2 is horizontal. By iteration we get 

for any horizontal vector fields Z,, j =  1 , .  . . , k. We conclude that Z ( F ( X ,  Y ) )  is 
parallel to $. Ozeki’s theorem (Kobayashi and Nomizu 1963, p 101) tells us, however, 
that the infinitesimal holonomy is generated by the expressions of this form. The 
infinitesimal holomy is thus one dimensional, generated by a constant vector II in the 
Lie algebra. Finally, if the bundle is non-trivial, the holonomy group must be a U( l ) ,  
rather than merely R, showing that n must be quantised. 

The transition function of a monopole is now homotopic to h (  t )  = e x p ( 4 ~ I I t ) ,  
0 t =s 1. p (  P )  is thus simply p(  P )  = 2z(II). Let us now consider an invariant function 
f on @ x (G/H)  which is linear in  the first variable. Such a function can be viewed 
alternatively as an equivariant map f: G / H  += @* (algebraic dual of a), characterised 
by f o  = f (  e H )  E 8*. So invariant functions correspond to H-invariant elements in the 
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dual, i.e. to elements in (a*)". Let us consider the real 2-form ( f o  0, F) on P. (The 
bracket ( , ) here denotes the pairing between @* and @.) It is closed, d(f0 @, F) = 
( D ( f 0  a), F)+ (f 0 Q,, DF) = 0, since f is linear in the first variable and D@ = 0, and 
by the Bianchi identity. It is also horizontal, since F is horizontal. So it descends to 
a unique closed real 2-form a' on M: 

P A Horoa'thy and J H Rawnsley 

(f 0 Q,, F )  = .rr*af. (7) 

Proposirion. The cohomology class [a'] is independent of the connection A and 
depends only on the bundle (P, H). 

Indeed, the image of x = f 0 Q, is a coadjoint orbit G/Go, where Go is the stability 
group of fo. DX = 0 since f is linear. Hence (P ,  A) reduces to the Go bundle Po with 
connection Ao. Po = { p E P (x( p) =fo} (Kobayashi and Nomizu 1963) and therefore 

(the Lie algebra of Go) 
and so (7) is a Chern-Weil form representing the bundle Po, independent of the choice 
of Ao, by the Chern-Weil theorem (Kobayashi and Nomizu 1969). Summarising, we 
get the following. 

( x , F ) = ( f o Q , , F ) = ( f 0 , F )  on Po. 
The point is thatf, is a first-order invariant function on 

Theorem. For any invariant function f on x (G/H) the integral (3) depends only 
on the homotopy class [PI E .rr,(H), provided that the reducing map Q, is covariantly 
constant. Its value is calculated by 

r 

Proof: The integrand in (3) is, by (7), just SZ'. But the cohomology class [a'] depends 
only on the homotopy class [PI E .rrl(H). Hence, so also does the integral (3). Observe 
finally that if f a €  (@*)", then 

f o ( T )  = f o ( 4 7 ) ) )  for T E b .  

But F is t)-valued and hence ( f o  @, F) = (fo, F )  = (fa, z ( F ) ) .  Consequently 

For a monpole bundle defined by a non-Abelian charge vector II, this simplifies further 
to 

zf=4T(fo, n). (9) 

Indeed, for a monpole DQ, = 0 exactly when II E b, and then p ( P )  = 2z(II). Assume, 
in particular, that G is semisimple and simply connected and qc is in the adjoint 
representation. Choose a Cartan subalgebra T, let a,, i = 1,. . . , r = rank G be the 
simple roots and define 7, for a root a by Tr(Tat) = a ( t ) ,  6 E T. Define the indices 
i, 1 , j  = 1, .  . . , p  by ai,(qPo) = O .  Denote Ti = 277,,,/al(7,,,). Then z ( ~ , , ) ,  j =  1,. . . , p  form 
a Z basis for z(T), so p[cp ]  = X j  m,z(Ti,). fo is linear, so 

Forf(F, c p )  = Tr(F, q k )  we have (fa, 5) =Tr(cptt) and (10) reduces to (4.26) and (4.27) 
in HorvQthy and Rawnsley (1984). 
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