Monopole invariants

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 20747
(http://iopscience.iop.org/0305-4470/20/3/035)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 10:40

Please note that terms and conditions apply.

COMMENT

Monopole invariants

P A Horváthy† and J H Rawnsley \ddagger
\dagger Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin, Ireland \ddagger Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

Received 23 September 1985

Abstract

The topological invariants of monpoles introduced by Taubes are described in a Chern-Weil framework.

Consider a non-Abelian monopole (A_{j}, Φ), with the Higgs field in the adjoint representation of a semisimple and compact Lie group G (for a review on monopoles see, e.g., Goddard and Olive (1978)). The expression

$$
\begin{equation*}
I=\int_{s^{2}} \operatorname{Tr}(F \Phi) \tag{1}
\end{equation*}
$$

(where F is the field strength tensor and S^{2} is the 2 -sphere at infinity) is known to be a topological invariant, i.e. to depend only on $[\Phi] \in \pi_{2}(G / H)$, where H is the residual symmetry group, $\mathrm{G} / \mathrm{H}=\mathrm{G} \Phi_{0}$. (1) appears, for example, in the Bogomolni bound for the energy.
(1) has been generalised by Taubes (1981) to

$$
\begin{equation*}
I^{(k)}=\int_{S^{2}} \operatorname{Tr}\left(F \Phi^{k}\right) \tag{2}
\end{equation*}
$$

[Φ] is now a p-tuple of integers m_{1}, \ldots, m_{p}, where p is the dimension of the centre of the Lie algebra \mathfrak{h} of H . Taubes (1981) has proved that (2) is a linear combination of the m_{j} (see also O'Sé et al 1984).

Recently (Horváthy and Rawnsley 1985) (2) has been further generalised. We have shown that, if f is an arbitrary invariant function on $\mathbb{G} \times \mathrm{G} / \mathrm{H}$ which is linear in the first variable and if Φ transforms according to an arbitrary representation of G, then

$$
\begin{equation*}
I^{(f)}=\int_{s^{2}} f(F, \Phi) \tag{3}
\end{equation*}
$$

is a topological invariant as long as Φ is covariantly constant. As a matter of fact, the value of (3) depends only on the free part of [Φ] and is easily calculated (see (8)-(10) below). Such expressions are needed to derive generalised Dirac conditions (Goddard and Olive 1978, 1981, Horváthy and Rawnsley 1985).

The proof is based on constructing an isomorphism ρ between the free part of $\pi_{1}(\mathrm{H})$ and a p-dimensional lattice in the centre of \mathfrak{h}. Here we give first a new Chern-Weil type construction§ to this map ρ. Next, we use the new framework to rederive the above results on generalised invariants.
§ We understand that there is a related result by Straumann and Wipf (1985).

In monopole theory one starts with a trivial 'unifying' bundle $\boldsymbol{Q}=\mathbb{R}^{3} \times \mathrm{G}$, where $\mathrm{G}-\mathrm{a}$ compact and simply connected Lie group-is the 'unifying group'. At large distances the G symmetry is spontaneously broken to a closed subgroup H of G. Geometrically, over $S^{2}(\mathbb{Q}, \mathrm{G})$ is reduced to a principal H bundle P. Any such reduction is produced by an equivariant 'reducing map' (Kobayashi and Nomizu 1963). Choosing a global trivialisation of Q, the reducing map can be identified with a map $\Phi: S^{2} \rightarrow$ G / H-the physical Higgs field. Φ defines a homotopy class $[\Phi] \in \pi_{2}(\mathrm{G} / \mathrm{H})$. Let $\delta: \pi_{2}(\mathrm{G} / \mathrm{H}) \rightarrow \pi_{1}(\mathrm{H})$ denote the connecting homomorphism. Two monopole bundles are isomorphic iff the corresponding classes in $\pi_{2}(\mathrm{G} / \mathrm{H})$ (or in $\pi_{1}(\mathrm{H})$) are the same. $\pi_{1}(\mathrm{H})=\pi_{1}(\mathrm{H})_{\text {free }}+\pi_{1}\left(\mathrm{H}_{\mathrm{ss}}\right)$, where $\pi_{1}(\mathrm{H})_{\text {free }}=Z^{p}, p$ being the dimension of $Z(\mathfrak{h}) . \mathrm{H}_{\mathrm{ss}}$ is the semisimple subgroup of H generated by the derived algebra $[\mathfrak{h}, \mathfrak{h}] . \pi_{1}\left(\mathrm{H}_{\mathrm{ss}}\right)$ is a finite Abelian group.

The free part is described as follows: denote by $\Gamma=\{\xi \in \mathfrak{h} \mid \exp 2 \pi \xi=1\}$ the unit lattice of H, and let $z: \mathfrak{h} \rightarrow Z(\mathfrak{h})$ be the projection of the Lie algebra of H onto its centre. $z(\Gamma)$, the image of Γ under z, is a lattice in $Z(\mathfrak{h})$, whose dimension is the same as that of $Z(\mathfrak{h})$, say ρ. In Horváthy and Rawnsley (1985) we have proved the following theorem. Define, for any loop γ in H ,

$$
\begin{equation*}
\rho(\gamma)=(1 / 2 \pi) \int_{\gamma} z\left(\theta_{\mathrm{H}}\right) \in Z(\mathfrak{h}) \tag{4}
\end{equation*}
$$

where $\theta_{\mathrm{H}}=g^{-1} \mathrm{~d} g$ is the canonical (Maurer-Cartan) 1-form of $\mathrm{H} . \rho$ defines an isomorphism of $\pi_{1}(\mathrm{H})_{\text {free }}$ with $z(\Gamma)$. If $\zeta_{1}, \ldots, \zeta_{p}$ is a \mathbb{Z} basis for $z(\Gamma)$, then $\rho(\gamma)=\Sigma m_{i} \zeta_{i}$ provides us with p 'quantum' numbers m_{1}, \ldots, m_{p}. Any loop in H is known to be homotopic to one of the form $\gamma(t)=\exp (2 \pi \xi t)$, for which $\rho(\gamma)=z(\xi)$.
$\rho(\Phi)=\rho(\delta[\Phi])$ can also be calculated as the integral of a 2 -form over the 2 -sphere at infinity:

$$
\begin{equation*}
\rho(\Phi)=(1 / 2 \pi) \int_{S^{2}} \Phi^{*} \Omega \tag{5}
\end{equation*}
$$

where Ω is the projection of G / H of the $Z(\mathfrak{h})$-valued 2 -form $z\left(\mathrm{~d} \theta_{\mathrm{G}}\right)$ on G . The situation can also be understood from a Chern-Weil-type viewpoint (Kobayashi and Nomizu 1969). Let us consider an arbitrary connection form A on P, and denote by $F=D A$ its curvature form. $z(F)$ is a $Z(\mathfrak{h})$-valued 2 -form on P, which is horizontal and basic, since

$$
r_{g}^{*} z(F)=z\left(r_{g}^{*} F\right)=z\left(A \mathrm{~d}^{-1} F\right)=z(F)
$$

so $z(F)$ descends to S^{2} to a $Z(b)$-valued 2-form $\Omega^{A}, z(F)=\pi^{*} \Omega^{A}$. This 2-form is closed:

$$
\mathrm{d}(z(F))=z(\mathrm{~d} F)=z(D F-[A, F])=z(D F)=0
$$

since z vanishes on the derived algebra and $D F=0$ by the Bianchi identity.
Let A^{\prime} be a second connection form on P and consider $B=A^{\prime}-A . B$ is a basic 1 -form of the adjoint type so

$$
F^{\prime}=\mathrm{d} A^{\prime}+\frac{1}{2}\left[A^{\prime} \wedge A^{\prime}\right]=F+D^{A} B+\frac{1}{2}[B \wedge B]
$$

Thus

$$
z\left(F^{\prime}\right)=z(F)+z\left(D^{A} B\right)=z(F)+\mathrm{d}(z(B))
$$

But $z(B)$ is an invariant horizontal 1 -form which descends to a 1 -form β on S^{2}, and hence $\Omega^{A^{\prime}}=\Omega^{A}+\mathrm{d} \beta$. This proves the following theorem.

Theorem. The cohomology class $\left[\Omega^{A}\right] \in \mathrm{H}^{2} \mathrm{~d} R\left(S^{2}\right) \otimes Z(\mathfrak{h})$ is independent of the choice of the connection A on P. Consequently, the integral

$$
\begin{equation*}
\rho(P)=(1 / 2 \pi) \int_{S^{2}} z(F) \in Z(\mathfrak{h}) \tag{6}
\end{equation*}
$$

depends only on the bundle P.
Let us now assume that (P, H) is the reduction of the trivial unifying bundle (Q, G) defined by $\Phi: S^{2} \rightarrow \mathrm{G} / \mathrm{H}$ and so can be identified with the pullback by Φ of G , viewed as a principal H bundle over G / H. The \mathfrak{b} component of θ_{G} defines a connection on the principal H bundle G whose pullback by Φ is a connection form A on P. It is not difficult to show that $z(D A)=\Phi^{*} \Omega$, where Ω is the 2 -form defined above. Thus we have established the equivalence of our new construction with those given before.

Monopole fields also satisfy the Yang-Mills-Higgs equations. Assuming a sufficiently rapid fall-off at infinity, on S^{2} the Yang-Mills-Higgs equation reduces to $D^{*} F=0$, where the ${ }^{*}$ is the Hodge operator on the Riemannian manifold S^{2}. The solution of this equation has been given by Goddard et al (1977). There exists a constant vector Π in \mathfrak{h} such that $F=\mathscr{F} \Pi$, where \mathscr{F} is the canonical area form of the 2 -sphere. Π is quantised, $\exp (4 \pi \Pi)=1$. The vector Π can be chosen without loss of generality in any given Cartan subalgebra of \mathfrak{h}.

This theorem can also be reformulated (Friedrich and Habermann 1985) as the following theorem.

Theorem. The holonomy group of asymptotic monopole bundles is a $\mathrm{U}(1)$, generated by the 'non-Abelian charge' vector Π.

Here we give a new proof for this statement. The field strength tensor F is a section of the bundle of Lie algebra-valued 2-forms on S^{2}, so $F=\left(\pi^{*} \mathscr{F}\right) \psi$, where π is the projection $P \rightarrow S^{2}$, the * denotes pullback and ψ is an adjoint Higgs-type field, $\psi(p g)=$ $A \mathrm{dg}^{-1} \psi(p) .{ }^{*} F=\psi$ (Hodge star) and hence the asymptotic field equation reduces to $D \psi=0: \psi$ is a covariantly constant Higgs field.

If X and Y are vector fields on P, then $F(X, Y)=f \psi$, where f is the real function $f=\pi^{*} F(X, Y)$. Thus for any horizontal vector field Z on P :

$$
Z(F(X, Y))=Z(f) \psi-f[A(Z), \psi]=Z(f) \psi
$$

because $0=D \psi=\mathrm{d} \psi+[A, \psi]$ and Z is horizontal. By iteration we get

$$
Z_{1}\left(\ldots Z_{k}\{F(X, Y)\} \ldots\right)=f^{(k)} \psi
$$

for any horizontal vector fields $Z_{j}, j=1, \ldots, k$. We conclude that $Z(F(X, Y))$ is parallel to ψ. Ozeki's theorem (Kobayashi and Nomizu 1963, p 101) tells us, however, that the infinitesimal holonomy is generated by the expressions of this form. The infinitesimal holomy is thus one dimensional, generated by a constant vector Π in the Lie algebra. Finally, if the bundle is non-trivial, the holonomy group must be a $U(1)$, rather than merely \mathbb{R}, showing that Π must be quantised.

The transition function of a monopole is now homotopic to $h(t)=\exp (4 \pi \Pi t)$, $0 \leqslant t \leqslant 1 . \rho(P)$ is thus simply $\rho(P)=2 z(\Pi)$. Let us now consider an invariant function f on $(G) \times(G / H)$ which is linear in the first variable. Such a function can be viewed alternatively as an equivariant map $f: G / H \rightarrow\left(B^{*}\right.$ (algebraic dual of (B), characterised by $f_{0}=f(e H) \in \mathfrak{S b}^{*}$. So invariant functions correspond to H -invariant elements in the
dual, i.e. to elements in $\left(G^{*}\right)^{H}$. Let us consider the real 2 -form $\langle f \circ \Phi, F\rangle$ on P. (The bracket \langle,$\rangle here denotes the pairing between (G) and (G).) It is closed, \mathrm{d}\langle f \circ \Phi, F\rangle=$ $\langle D(f \circ \Phi), F\rangle+\langle f \circ \Phi, D F\rangle=0$, since f is linear in the first variable and $D \Phi=0$, and by the Bianchi identity. It is also horizontal, since F is horizontal. So it descends to a unique closed real 2 -form Ω^{f} on M :

$$
\begin{equation*}
\langle f \circ \Phi, F\rangle=\pi^{*} \Omega^{f} \tag{7}
\end{equation*}
$$

Proposition. The cohomology class [Ω^{f}] is independent of the connection A and depends only on the bundle (P, H).

Indeed, the image of $\chi=f \circ \Phi$ is a coadjoint orbit G / G_{0}, where G_{0} is the stability group of $f_{0} . D_{\chi}=0$ since f is linear. Hence (P, A) reduces to the G_{0} bundle P_{0} with connection $A_{0} . P_{0}=\left\{p \in P \mid \chi(p)=f_{0}\right\}$ (Kobayashi and Nomizu 1963) and therefore $\langle\chi, F\rangle=\langle f \circ \Phi, F\rangle=\left\langle f_{0}, F\right\rangle$ on P_{0}.

The point is that f_{0} is a first-order invariant function on \mathscr{G}_{0} (the Lie algebra of \mathbf{G}_{0}) and so (7) is a Chern-Weil form representing the bundle P_{0}, independent of the choice of A_{0}, by the Chern-Weil theorem (Kobayashi and Nomizu 1969). Summarising, we get the following.

Theorem. For any invariant function f on $(\mathbb{B} \times(\mathrm{G} / \mathrm{H})$ the integral (3) depends only on the homotopy class $[P] \in \pi_{1}(\mathrm{H})$, provided that the reducing map Φ is covariantly constant. Its value is calculated by

$$
\begin{equation*}
I^{(f)}=\int_{S^{2}} \Omega^{f}=2 \pi\left\langle f_{0}, \rho(P)\right\rangle . \tag{8}
\end{equation*}
$$

Proof. The integrand in (3) is, by (7), just Ω^{f}. But the cohomology class [$\left.\Omega^{f}\right]$ depends only on the homotopy class $[P] \in \pi_{1}(\mathrm{H})$. Hence, so also does the integral (3). Observe finally that if $f_{0} \in\left(\mathscr{G}^{*}\right)^{\mathrm{H}}$, then

$$
f_{0}(\eta)=f_{0}(z(\eta)) \quad \text { for } \quad \eta \in \mathfrak{h}
$$

But F is \mathfrak{h}-valued and hence $\langle f \circ \Phi, F\rangle=\left\langle f_{0}, F\right\rangle=\left\langle f_{0}, z(F)\right\rangle$. Consequently

$$
I^{f}=\int_{S^{2}} \Omega^{f}=\left\langle f_{0}, \int_{S^{2}} z(F)\right\rangle=2 \pi\left\langle f_{0}, \rho(P)\right\rangle
$$

For a monpole bundle defined by a non-Abelian charge vector Π, this simplifies further to

$$
\begin{equation*}
I^{f}=4 \pi\left\langle f_{0}, \Pi\right\rangle \tag{9}
\end{equation*}
$$

Indeed, for a monpole $D \Phi=0$ exactly when $\Pi \in \mathfrak{h}$, and then $\rho(P)=2 z(\Pi)$. Assume, in particular, that G is semisimple and simply connected and φ is in the adjoint representation. Choose a Cartan subalgebra T, let $\alpha_{i}, i=1, \ldots, r=$ rank G be the simple roots and define η_{α} for a root α by $\operatorname{Tr}\left(\eta_{\alpha} \xi\right)=\alpha(\xi), \xi \in T$. Define the indices $i_{j} 1, j=1, \ldots, p$ by $\alpha_{i_{j}}\left(\varphi_{0}\right)=0$. Denote $\eta_{i}=2 \eta_{\alpha_{i}} / \alpha_{i}\left(\eta_{\alpha_{i}}\right)$. Then $z\left(\eta_{i_{i}}\right), j=1, \ldots, p$ form a \mathbb{Z} basis for $z(\Gamma)$, so $\rho[\varphi]=\Sigma_{j} m_{j} z\left(\eta_{i j}\right) . f_{0}$ is linear, so

$$
\begin{equation*}
I^{(f)}=2 \pi \sum_{j=1}^{p}\left\langle f_{0}, \eta_{i j}\right\rangle m_{j} . \tag{10}
\end{equation*}
$$

For $f(F, \varphi)=\operatorname{Tr}\left(F, \varphi^{k}\right)$ we have $\left\langle f_{0}, \xi\right\rangle=\operatorname{Tr}\left(\varphi_{0}^{k} \xi\right)$ and (10) reduces to (4.26) and (4.27) in Horváthy and Rawnsley (1984).

References

Friedrich Th and Haberman L 1985 Commun. Math. Phys. 100231
Goddard P, Nuyts J and Olive D 1977 Nucl. Phys. B 1251
Goddard P and Olive D 1978 Rep. Prog. Phys. 411357
-_ 1981 Nucl. Phys. B 191511
Horváthy P A and Rawnsley J H 1984 Commun. Math. Phys. 96497
_- 1985 Commun. Math. Phys. 99517
Kobayashi S and Nomizu K 1963 Foundations of Differential Geometry vol I (New York: Interscience)

- 1969 Foundations of Differential Geometry vol II (New York: Interscience)

O'Sé D, Sherry T N and Tchrakian D H 1984 Preprint DIAS-STP-84-24.
Straumann N and Wipf A 1985 unpublished
Taubes C H 1981 Commun. Math. Phys. 81299

